
Towards a Fair and Efficient Course Allocation
System

DASS End Term Paper

Varul Srivastava
Computer Science and Engineering

IIIT Hyderabad
varul.srivastava@research.iiit.ac.in

Abstract—In this paper, we attempt to solve the course alloca-
tion problem. That is, allocating M courses among N students.
We will explore game theoretic approach to make the process fair,
and then use mechanism design principles to make the process
computationally efficient. Later we will propose a system design
to implement the proposed model.

Index Terms—game theory, mechanism design

I. INTRODUCTION

Course allocation scheme that are under implementation
have multiple loopholes. It can be exploited and yield un-
fair results. The schemes which are fair are computationally
expensive, NP hard. We aim to design a course allocation
scheme that gives fair results(rare unfairness), and whose
implementation is computationally efficient to be used in
realistic scenario.

The paper addresses the problem of course allocation. The
problem states that, for N courses with ui seats in each of
the courses, and M students with some preference order of
the courses, what is the optimal strategy for allocating the
courses among the students, so that the scheme is strategy-
proof, efficient and fair.

So far, we know that course allocation schemes are either
fair and NP hard, or computationally efficient but could be
strategically exploit to yield unfair results. Budish[4] has sug-
gested an Approximate Competitive Equilibrium from Equal
Incomes (abbrv. A-CEEI) algorithm to the case of indivisible
goods. This algorithm satisfies the criteria of fairness and
efficiency under tight approximations. We aim to provide a
system design for the A-CEEI method of Course Allocation.

Note that the course allocation problem has multiple imple-
mentations in other domains as well such as,
• First of all, it is of primal implementation in course allo-

cation of Colleges, and in other institutions like allocation
of transfer locations to government officials etc.

• In business strategy this problem can be translated (after
a minor modification) to allocation of optimal location
for shops, advertisement billboards across a city. This
is a non-cooperative game with all agents competing to
maximize their own advertisement or sales, or allocation
of time-slots on Television advertisement schedule to
maximize advertisement.

• In politics, this problem can be seen as allocation of
candidates of a Political Party to seats in a constituency,
in efficient way, to maximize the number of seats won.

• Similarly, this method can be implemented in distributed
systems, for allocation of resources such as CPU-time,
RAM and network traffic to meet target (either maximize
the number of nodes working at optimal efficiency, or
maximize the net throughput of the network etc).

Notice that each method requires us to make some change
in the algorithm based on our end-goal, or the type of data
given/required. For example, in case of business strategy, the
winner determination problem from combinatorial auctions
strategy can yield useful results, whereas for course allocation
system it fails (reason explained in a later section). The
generalized version of the Course Allocation Problem is the
multi-unit assignment problems for which multiple objects are
assigned to agents on the basis of priorities.

Thus, we realise the urgency of the problem at hand and
the need for a computationally efficient solution. In this paper
we will explore the problem in multiple fragments. First, we
will see the problem at hand, and its proposed solution in
Introduction. Then, we explore the current state of research
in this domain, and possible motivations that we aim to
draw from them. Then we explain the theoretical background,
to achieve fairness following which, we explain the system
architecture to implement these functions.

II. LITERATURE REVIEW

We first discuss the Multi-Unit assignment problem, and
reason out why a fair, strategy-proof solution is NP hard. Then
we will discuss some alternative approaches, and finally, we
will discuss which of these we have tried to implement in our
model, and why.

A. Completely fair, strategy proof multi-unit assignment prob-
lem is NP hard

The problem of assigning multiple objects to multiple agents
based on priorities, has some problems. First, description of
the entire preference profile requires listing up to 2N subsets
of courses. Thus processing such requests for M students
itself is of O(M × 2N). Thus the problem is NP hard[13].

Other than this, deferred acceptance mechanism can produce
unstable matching as Nash Equilibrium’s outcome[14].

B. Winner Determination of Combanitorial Auctions

Another approach to solve the Course Allocation Algorithm
was using approach of winner determination problem of com-
banitorial auctions. We shall see the flaw in this method first,
by example, and then discuss on it.

a b c d
1 65 33 1 1
2 60 32 5 3

TABLE I
PREFERENCE SCORES FOR STUDENTS 1,2

Notice that the preference is analogous to the bidding
amount for the course. However, due to the fact that this is not
actual currency, this is not a zero sum game for each player vs
auctioneer, quite opposite to that of Combanitorial Auctions.
Thus, course allocations will be, 1 gets courses a,b and 2 gets
courses c,d. However, this is not fair allocation. In this case the
fairest allocation is 1 gets a,d and 2 gets b,c. Thus we see this
is not a strategy proof method and fairness is not guaranteed.

C. Dominant Strategy implementation of Stable Allocations

The Dominant Strategy of Stable allocations[11] is satisfied
if and only if the priorities satisfies essential homogeneityα.
Even so, the mechanism will be dependent on the number of
Seats per course (distribution of seats among courses). To gain
independence from this, the priorities have to be acyclic. Thus,
the essential homogeneity and acyclicity conditions together
impose enough restrictions that the model is not general in
nature.[3]

D. Approximate Competitive Equilibrium from Equal Incomes
(A-CEEI)

The A-CEEI approach[9] is more suited for large markets,
or in our case, large values of N and M, as in such cases
the mechanism becomes efficient and approximately strategy
proof. Further, the problem is the implementation of A-CEEI,
which is complex and computationally intensive.

We focus on deriving an implementation for the A-CEEI
model, which, except for it’s complexity, promises to be the
most general, fair and efficient of the lot. Moreover, we will
use some optimization techniques to reduce the computation
intensiveness enough for real-time implementation.

III. THE MODEL

We now come to understanding of the A-CEEI Model,
and extract inferences that can be exploited for computational
efficiency.

A. A-CEEI Theory

Parameters We are given a set of M courses, with the ith

course having capacity qi (integer). Each student has a set
of permissible schedules (the schedule one can attend some
course at). It is shown as a set (or a binary string ψ ⊆ {0, 1}M ,

with an added constraint of k ≤ M. There is a set of Utility ui
for each course, for a student. More formally u : Z −→ R+

such that Z is the set of courses and u(xi)=ui for some xi ∈ Z.
Further, there is another utility function η : P (Z) −→ R such
that η maps the utility of getting a particular set of courses.

Problem Statement : We need to maximize xi for each
student, such that cumulative utility is maximized. Further we
need to satisfy the price constraint for each course, and attempt
to minimize the market clearing error.

B. Algorithm

1 Students report their preferences in form of the utility
mapping (ui)

N
i=1

2 Assign each student a budget bi such that it is a uniform
random number from [1, 1 + β] where, 0 < β <<
min(1

N ,
1

k−1)

3 Assign a set of prices (pj)
M
j=1 to each course, and

allocations (x∗i)
N
i=1 to each student such that

– Students maximize utility subjected to budget con-
straint i.e.

∀i : xi = argmaxx′∈ψi [ui(xi) : Σjxijp
∗
j ≤ b∗i]

– Minimize the magnitude of market clearing error

α ≡
√

Σjξ2j

where, ξj =

{
Σix

∗
ij − qj ifp∗ > 0,

max[Σi(x
∗
ij − qi), 0] otherwise

C. Advantage over other methods

Now, we discuss what factors made this algorithm a better
choice than the others. First, this algorithm provides versatility
of expression. It not only allows us to order courses according
to weighted preference but also allows us to add utility if a
particular bouquet of courses are selected. Notice this is better
because in some methods, we will estimate likeliness of some
course a is more than that of b. However, in this case we might
express likeness as u(a)=51, u(b)=49 or u(a)=99 u(b)=1. Note
that implication is same, but the degree of likeness is displayed
by assigning integer weights.

Other than this, this method also adds the option of having
more utility for a set of courses, over some discrete courses.
It is beneficial in realistic implementations, like for course
allocation, it might be more desired to have courses a,b,c
together rather than three unrelated but in demand courses
d,e,f. Mathematically, u(a)+u(b)+u(c) < u(d)+u(e)+u(f).
However it might be that a,b,c together are more desired. In
this case, we have added an additional parameter η such that,
u(a) + u(b) + u(c) + η({a, b, c}) > u(d) + u(e) + u(f) +
η({d, e, f})

IV. SYSTEM ARCHITECTURE

A. Decentralized Multi Layered Architecture

We implement a decentralized multi-layered architecture,
to overcome the problem of prompting user for exponential
number of entries for η. We propose 2 layers, one the Master

layer, which searches through the price space to decide what
price to next propose to the agents. The other layer, i.e. Agent
layer searches through the bundle space to find most preferred
bundle, at current prices.

Notice in the diagram above, the 2 layers. The processing is
done separate from the UI for both layers. A common database
is taken for reading-writing.

B. Agent Level Algorithm

1) Input: For N courses, each student has to input their
preferences as real values, which sum up to 100 (we can take
normalization for this). This function is ui. We also allow an
option to add a set of courses and an additional bouquet utility
of ηi associated with it. Note this function η should exist from
every subset of courses to real numbers, but we take default
value as 0 for non-inputted values. This reduces the number
of inputs to non-exponential, (however, user can still input 2N

inputs).
2) Demand Computation: The demand computation is an

optimization problem, for an agent given the set of prices,
agent’s < u > and < η >. We are given a list of constraints
ci = (ci1, ci2,) and courses xic1ik , xic2ik , ... has capacity con-
straint ck. This problem is algorithmically NP hard. However
we can devise a solution using Mixed Integer Programming.
The conditions are :

max
∑
j

vijxij +
∑
j<j′

ηij,j′zij,j′

subjectedto
∑
j

pijxij ≤ bi

zij,j′ = xij&xij′

∑
l

xiclik ≤ cik

(& is the bitwise/setwise and operation)

C. Master Level Algorithm

We will have to do local search in Master Level. We will
first define the Local Search Model, and then explain the
method we use to find neighborhoods for that search model.

1) Local Search: We plan on implementing a variant of
Hill-Climbing Search Algorithm. It remembers the last t
(distinct) positions it had expanded to. The reason for this
modification is :

• It mitigates the weakness of Hill-Climbing (of getting
stuck in local minimum).

• It retains the ability of Hill-Climbing of finding optimal
solution.

This algorithm is named the Tabu Search Algorithm[12].
Our search space is the set of prices and induced demands.
We consider equality of 2 nodes when they generate same
aggregate demand

∑
i

x∗ij . For minimization of market clear-

ing error, we keep the convergence test as 100 iterations of
unimproved results (note this does not minimize the market
clearing error, but keeps them within theoretical bounds).

2) Neighborhood Selection: In the hill-climb tabu
search[12] function, we need to select neighborhoods. For
this, we apply a combination of 2 well known processes.
They are Gradient Descent and MIP Price Adjustment.
The first moves price along gradient, and the other does
individual price adjustments.

The gradient descent process is similar to economic process
of tatonnement, where price of goods in more demand were
reduced, and those in less demand were increased, to maintain
balance between supply and demand. Mathematically, demand
dj ≡

∑
i

xij , supply is qj and prices pj

∇ =

{
dj − qj ifpj > 0,

max(dj − qj , 0) otherwise

We have another method to adjust price, by each individual
course. We change the price of courses in deficit of demand
such that demand (no. of students) increases by exactly 1.
Notice this, follows conservation, and reduces the demand
of courses in over-demand. This process involves using of 2
MIPs[1], and is computationally a little expensive. However,
M << N, so it is still not the most expensive procedure
computationally.

D. Agent Level Architecture

The following shows the UML Class Diagram for the Agent
Level. It also shows association and multiplicity. Notice the
Database shown will be shared between the 2 levels.

Note the design pattern implemented are Object Pool,
Creational Design pattern[8](in the Agent Thread class) as
it avoid expensive acquisition and release of resources by
recycling threads (objects of agent class) that are no longer in
use. Also, it uses the Strategy Behavioural Design[5] Pattern
in the Agent class to implement the Demand Computation
Algorithm.

E. Master Level Architecture

In master level, we bundle the 2 neighbourhood search
algorithm in separate classes, and inherit them in the master
class. This allows modularity enough to update the algorithm
as and when needed.

In the master level, the design patterns implemented are,
Strategy Behavioural Design Pattern[5] to implement Gradient
Descent and 2-MIPs algorithms in separate classes.

F. Optimization

Along with the algorithm, we exploit properties of Eco-
nomic Theory and Optimization techniques to produce more
efficient structures. Notice it is only useful to apply op-
timization on the slowest/ computationally most expensive
portions of the code, which on Agent Level is the Demand
Computation, and in Client Level is

1) Parallelism: Traditional Economic Theory allows dis-
joint agents to take decisions dis-jointly. This computational
benefit can be exploited by parallelism. Thus for N courses,
we can design a multi-threaded model to compute decisions
in parallel. We have to experimentally decide optimal balance
between system cost and throughput as N can be very large.

2) Hybrid Neighborhoods: We implemented hybrid neigh-
borhoods method, because of its effectiveness over either of
the individual methods, i.e. gradient descent, or double-MIPs.
It can be inferred from experimental data that in 100 iterations,
hybrid neighborhood works for maximum iterations (with
changing values). Also, the two different possibilities of user
input, i.e. additive separable (realistic inputting) and arbitrary
(random input) are both handled by the hybrid variant.

G. Pipeline and Sequence Diagram

The main interaction is between the Student and the Auto-
mated system. We will assume multiple rounds of assignment
of courses, each with a deadline. The deadline will decide till
when editing of preferences is allowed for student, and when
execution of program begins.

Notice that Master level interaction with actor
(Professor/System-Admin) is trivial and left open for
multiple changes according to structure of administration
implementing.

V. CONCLUSION AND FUTURE WORK

We have thus taken a problem which seemed inefficient and
designed a realizable system for it. This describes the power
of System Design. We discussed several algorithms, but the
versatility and boost in speed by system design achievable in
the A-CEEI algorithm was maximum. It is also fair and almost
strategy proof.

We notice this system is not generalized but specialized
for Course Allocation problem. We can make minor mod-
ifications to convert it to other problems discussed in the
Introduction section of the paper. I can think of an excellent
use of this problem, in consensus algorithms like delegated-
proof-of stake[7], where we can select verifying agents based
on computational efficiency and fairness. Other than this,
modifications can be made to the proposed system, such as
cache optimization for Agent-Database connection, for faster
computation.

In conclusion, this system is realistic and can be easily
implemented due to its modularity. It also allows different
segments of development teams (such as back-end, front-end,
database, algorithmic) to work without knowing details of
algorithm or the types of input from the front-end etc. Further,

due to Strategy Behavioural Design Pattern, modification of
the core algorithm does not destroy the entire structure of the
system.

ACKNOWLEDGMENT

I would like to acknowledge the clarity gained by taking the
course under Prof. R. Loganathan in the process of Optimized
System Designs.

REFERENCES

[1] Finding Approximate Competitive Equilibria: Efficient
and Fair Course Allocation - E. Budish, A. Othman, T.
Sandholm [Paper]

[2] Student Course Allocation with Constraints - Akshay
Utture, Vedant Somani, Prem Krishnaa, Meghana Nasre,
Meghana Nasre [Paper]

[3] Course Allocation via Stable Matching - Franz Diebold,
Haris Aziz, Martin Bichler, Florian Matthes, Alexander
Schneider [Paper]

[4] Centralized Course Allocation - Antonio Romero-
Medina, Matteo Triossi [Paper]

[5] Design Patterns - sourcemaking(website) [Webpage]
[6] Solving mixed integer programming problems (MIP) -

IBM(article/blog) [Link]
[7] DPoS - Bitcoinwiki (article) [Link]
[8] Design Patterns - DASS Lecture Slides - Prof. R.

Loganathan
[9] The combinatorial assignment problem: Approximate

competitive equilibrium from equal incomes. - E. Budish.
[Technical Paper]

[10] The use of knowledge in society. American Economic
Review, - F. Hayek. [Essay]

[11] Efficient Resource Allocation Under Multi-Demand
Games - Kojima, F. [Paper]

[12] Optimization Techniques — Tabu Search - Frank Liang
[Blog]

[13] Can Market Participants Report their Preferences Ac-
curately (Enough)? - E. Budish [Article]

[14] Constrained school choice - Guillaume Haeringer,Flip
Klijn [Paper]

https://www.researchgate.net/publication/221456105_Finding_approximate_competitive_equilibria_Efficient_and_fair_course_allocation
https://www.researchgate.net/publication/337256113_Student_Course_Allocation_with_Constraints
https://link.springer.com/article/10.1007/s12599-014-0316-6
https://e-archivo.uc3m.es/bitstream/handle/10016/27388/we1807.pdf
https://sourcemaking.com/design_patterns
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-solving-mixed-integer-programming-problems-mip
https://en.bitcoinwiki.org/wiki/DPoS
https://econpapers.repec.org/article/ucpjpolec/doi_3a10.1086_2f664613.htm
https://www.econlib.org/library/Essays/hykKnw.html
https://doi.org/10.1016/j.geb.2013.06.005
https://towardsdatascience.com/optimization-techniques-tabu-search-36f197ef8e25
https://www.nber.org/papers/w22448
https://www.sciencedirect.com/science/article/abs/pii/S002205310900057X

	Introduction
	Literature Review
	Completely fair, strategy proof multi-unit assignment problem is NP hard
	Winner Determination of Combanitorial Auctions
	Dominant Strategy implementation of Stable Allocations
	Approximate Competitive Equilibrium from Equal Incomes (A-CEEI)

	The Model
	A-CEEI Theory
	Algorithm
	Advantage over other methods

	System Architecture
	Decentralized Multi Layered Architecture
	Agent Level Algorithm
	Input
	Demand Computation

	Master Level Algorithm
	Local Search
	Neighborhood Selection

	Agent Level Architecture
	Master Level Architecture
	Optimization
	Parallelism
	Hybrid Neighborhoods

	Pipeline and Sequence Diagram

	Conclusion and Future Work

