
CELLULAR AUTOMATON BASED RANDOM NUMBER GENERATION
-Varul Srivastava

Abstract : We explore an interesting way of
generating random numbers, using the
Wolfram’s Rule 150 (10010110)2 of Cellular
Automaton. We also discuss how to remove user
bias in passwords to prevent dictionary attacks
to some extent.

Cellular Automaton – An Introduction

Cellular Automaton is a system that uses some
fixed rules and previous state of a system to
calculate next generation/state of the system.

G(e+1) = F(G(e),r)

Here, e+1th generation is obrained from
transformation rule r on eth generation. Let us
consider our example (rule 150) and solve few
generations to get an idea of the rule.

Rule F : For the ith bit of the e+1th generation we
combine the i-1th, ith and i+1th bit of the eth

generation to form a 3 bit number j (0-7) and
select the corresponding jth bit of r (which is an 8
bit number.

Initial Generation G(0) : 11100101
Rule r : 10010110
G(1) = F(11100101,10010110)
G(1) = 11001100

This explains the progression of generation, and
if we combine generations to a matrix M

┌ ┐
│ G(0)│

M = │ G(1)│
│ . │
│ . │
│ G(n)│
└ ┘

This is a 2-D matrix and we can generate byte
stream by reading bits column-wise.

Reading Bits from Matrix

We clearly see that there are multiple ways of
reading byte streams, but with varying levels of
privacy. Let us analyse the following ways :

1.Horizontal Generation of Stream: This is the
poorest method possible, as after reading stream
from first k (number of columns) bits, one is
able to predict all other bits.

2.Vertical Generation of Stream: This is
moderatley secure means, given we generate
extra bits (unused in generating streams) so that
prediction of generations is difficult. However,
it is still possible to read first grid and predict
next grid by optimising brute force to small base
exponential time.

3. Diagonal Generation of Stream: This is also
moderately secure, as it requires reading the
entire matrix and then predict the next matrix,
and security can be increased by creating
additional bit streams similar to previous
example.

4. Random Generation of Stream: This method
is also under study. It is more efficient if the
random number generator is salted with the
password
 (x_next) = (x * hash(pswd)* prime1 + prime2) % MOD.
 is better than,
(x_next) = (x * prime1 + prime2) % MOD.
This is the most secure way that I have come up
with. This way of stream generation gurantees
large-exponent exponential complexity of brute
force attacks.

Salting of Password – Removal of user bias

The potential of password is to have 256 values
per character, but the inherent bias of user to use
‘a’ or ‘e’ over ‘^’ or even ‘q’ is removed by a
function that removes the inherent bias. The
function is :

ch_new = (ch*Prime1 + Prime2) ^(prev_char)% 256

